POEM - O Plano de Ordenamento do Espaço Marítimo
Parte II
(Biótopos Marinhos)
Por Horst Engels
Na primeira parte desta publicação sobre o Plano de Ordenamento do Espaço Marítimo (POEM) apontou-se a necessidade de um zonamento do espaço marítimo com a inclusão no Plano de Ordenamento de uma classificação dos habitats e ecossistemas marinhas em forma de Plano Sectorial. Na segunda parte da publicação queremos apresentar algumas classificações existentes dos biótopos, habitats, ecossistemas e fundos marítimos do espaço europeu que podem ser usados pelo POEM depois de serem introduzidas nas classificações as características específicas da fauna e flora marinha portuguesa.
Portugal usa no ordenamento dos territórios terrestres o "
Plano Sectorial da Rede Natura 2000", uma classificação dos habitats terrestres que se baseia na
Directiva Habitat.
No entanto, uma
classificação dos habitats, biótopos e ecossistemas marinhos não pode ser uma mera cópia de uma classificação de biótopos e habitats terrestres devido à natureza bastante diferente do meio marinho. Enquanto os habitats terrestres se delimitam em mais ou menos 2 dimensões sobre a superfície terrestre e por fronteiras normalmente bem definidas, os habitats marinhos não são delimitadas por fronteiras nítidas e extendem-se frequentemente em mais do que 2 dimensões pela coluna de água ou numa dimensão temporal devido à correntes sazonais, afloramentos (upwelling) etc, com um dinamismo pouco comparável ao dos habitats terrestres.
1. O Conceito do Habitat
Habitat (do latim, ele habita) é um conceito usado em ecologia que inclui o espaço físico e os factores abióticos que condicionam um ecossistema e por essa via determinam a distribuição das populações de determinada comunidade.
O conceito de habitat é normalmente usado em referência a uma ou mais espécies, no sentido de estabelecer os locais e as condições ambientais onde o estabelecimento de populações desses organismos é viável. Por exemplo, o habitat da truta são os cursos de água bem oxigenados e com baixa salinidade das zonas temperadas.
Apesar do habitat ser um elemento da natureza, existem também os habitats artificiais, construídos pelo homem, normalmente para promover o aumento populacional de determinada espécie ou comunidade. Exemplos tão antigos como a história da humanidade incluem os campos de cultivo ou os criadouros de peixes.
Conceitos relacionados
- Um biótopo é a menor parcela ecológica que é possível discernir geograficamente (por exemplo: um dos biótopos da truta é a Ribeira das Casas na Ilha das Flores).
- Uma biocenose, biota ou comunidade biológica é a associação de comunidades que habitam um biótopo. A biocenose e o biótopo formam no seu conjunto o ecossistema.
- Um bioma é o conjunto da flora e fauna que vive num determinado habitat e ocupa uma determinada região geográfica e topográfica.
- Um micro-habitat é a vizinhança imediata do local onde vive um determinado espécime animal ou vegetal.
- O nicho ecológico é a forma de vida de determinada espécie ou população dentro de um ecossistema, que determina o seu efeito noutras espécies ou populações.
No entanto, tem de se tomar também em conta que o uso dos termos "habitat" e "biótopo" não é sempre igual e pode assim causar confusão na aplicaão dos termos:
Habitat: “a habitat is taken to encompass the substratum, its topography and the particular conditions of wave exposure, salinity, tidal currents and other water quality characteristics (e.g. turbidity and oxygenation) which contribute to the overall nature of a place on the shore or seabed” (CONNOR ET AL. 2004)
Biotope: “…a biotope is defined as the combination of the abiotic habitat and its associated community of species. It can be defined at a variety of scales…” (CONNOR ET AL. 2004) “The term was‘‘rediscovered’’ when the UK Joint Nature Conservation Committee, working on a classification of the coastal marine environment, produced a new definition of the biotope (…): ‘‘Biotope = habitat + community’’, broader than under its former accepted definition where the biotope was considered as the physical part of the ecosystem.” … „The new understanding of ‘‘biotope’’ now dominates in the international scientific and applied environmental literature.” (OLENIN & DUCROTOY 2006).
Sobretudo no espao linguístico anglo-saxónico os termos "habitat" e biótopo" foram usados durante muito tempo como sinónimos.
Na Alemanha os termos "habitat" e "biótopo" são usados da seguinte forma:
Habitat: Konzentrationsstelle einer Art, die sich innerhalb eines größeren Biotops (z. B. Wald, Fluss, Ästuar) scharf hervorhebt, von den Gesamtbedingungen desselben jedoch in seiner Artenzusammensetzung weitgehend abhängt, z. B. Baum, Baumstumpf, Tierkadaver, Sandboden. (Citação em: NEHRING & ALBRECHT 2000)
"Espaço de concentração de uma espécie, espaço que se define bem dentro de um biótopo (como por exemplo: floresta, rio ou estuário), mas que ao mesmo tempo depende nas suas condições largamente do mesmo, como por exemplo, árvore, tronco de árvore, cadáver de um animal, fundo de areia etc." (Citação em: NEHRING & ALBRECHT 2000)
Biotop: Lebensstätte einer regelmäßig wiederkehrenden Artengemeinschaft (
Biocoenose) von einheitlicher, gegenüber seiner Umgebung abgrenzbarer Beschaffenheit (z. B. Hochmoor, Buchenwald, Höhle, Teich, Meeresstrand). (Citação em: NEHRING & ALBRECHT 2000)
"Sítio com uma comunidade estável de espécies (
biocenose) com características constantes e bem distinguíveis do ambiente em que está inserido (p.e gruta, lagoa, praia etc)(Citação em: NEHRING & ALBRECHT 2000).
Estas definições diferentes dos termos "habitat" e "biótopo" têm de ser tomado em conta quando se consulta ou tenta integrar classificações de espaços linguísticos diferentes.2. Sistemas de Classificação de Habitats Marinhos
2.1 European Nature Information System (EUNIS)
O
Sistema Europeu da Informação sobre Natureza (EUNIS) é uma classificação pan-europeia desenvolvida desde 1996 pela
Agência Europeia do Ambiente (AEA) em colaboração com o
„European Topic Centre for Nature Protection and Biodiversity (ETC/NPB)“ e o
„European Environmental Information Observation Network (Eionet)“. Esta classificação inclui todos os tipos de habitas naturais e artificiais, incluindo habitats aquáticos e terrestres.
O sistema EUNIS é um sistema de classificação hierárquico que diferencia neste momento 4 níveis (levels) de habitats terrestres e marinhos.
Existe um conjunto de funções predefinidas para facilitar a consulta da base de dados EUNIS:
(A Agência Europeia do Ambiente (AEA) ou EEA (European Environment Agency) é um órgão sob a administração da União Europeia.
A principal função da Agência Europeia do Ambiente é de carácter informativo. Fornece informação actualizada e fidedigna em matéria ambiental. O seu conhecimento é baseado em informações fornecidas por outras organizações com as quais colabora coordenando as suas funções a nível europeu. Os dados de qualidade que reúne, provenientes de países individuais e da sua rede institucional, são depois compilados e colocados à disposição dos utilizadores em diferentes formatos.
Desta forma, auxilia a União Europeia e os seus países membros no momento de tomada de decisões directamente relacionadas com o ambiente. É também uma preciosa ferramenta para os responsáveis pela formulação e implementação da legislação ambiental a nível europeu e nacional, assim como para o público em geral.
A sua sede localiza-se em Copenhaga, na Dinamarca.)
2.2 A Classificação dos Habitats Marinhos da Grã-Bretanha e da Irlanda
A
Classificação dos Habitats Marinhos da Grã-Bretanha e da Irlanda (
Marine Habitat Classification for Britain and Ireland) é um dos mais abrangentes sistemas de classificação dos habitas marinhos bênticos actualmente em uso. Este sistema foi desenvolvido por análise de conjuntos de dados empíricos e pela análise de outras classificações como dados na literatura pelo JNCC (Joint Nature Conservation Committee) da Grã-Bretanha. A secção marinha de EUNIS é totalmente compatível com esta classificação do JNCC e na realidade, a classificação de EUNIS baseia-se em grande parte nesta classificação.
2.3 Directiva Habitats
Directiva dos Habitats ou Directiva Habitats é o nome pelo qual é conhecida a Directiva 92/43/CEE do Conselho, de 21 de Maio de 1992, relativa à preservação dos habitats naturais e da fauna e da flora selvagens, transposta para o direito interno de Portugal pelo Decreto-Lei n.º 140/99, de 24 de Abril.
A directiva foi adoptada em 1992 como resposta da União Europeia aos princípios constantes da Convenção de Berna que havia sido assinada por todos os Estados-Membros e pela própria União. É uma das únicas duas directivas europeias que regulam a conservação da natureza e da vida selvagem, sendo a outra a Directiva das Aves.
A directiva tem como objectivo proteger cerca de 220 habitats e aproximadamente 1000 espécies listadas nos anexos à Directiva (Anexo I - Habitats, Anexos II, IV e V - Espécies). Os habitats e espécies listados são considerados como de interesse europeu, tendo sido seleccionados de acordo com critérios fixados na própria Directiva.
A descrição e o registo dos habitats desta directiva que não contém habitats marinhos, encontra-se no „Interpretation Manual of European Habitats“ (EUROPEAN COMMISSION 2007).
No entanto, para os habitats desta Directiva não existem regras gerais de classificação; variam os parâmetros utilizados na definição e delimitação dos habitats.
2.4 Outras Classificação ou Directivas
Uma directiva que tem de ser consultada numa classificação dos habitats marinhos é a DIRECTIVA 2000/60/CE DO PARLAMENTO EUROPEU E DO CONSELHO de 23 de Outubro de 2000 que estabelece um quadro de acção comunitária no domínio da política da água perante qual todos os estados membros são obrigados a manter as águas interiores e costeiras num bom estado ecológico.
3. A construcção de um sistema de classificação
O sistema de classificação EUNIS vai ser utilizado para servir de sistema de classificação dos habitats marinhos no âmbito do projecto POEM.
Para atingir este fim tem de haver os dados abióticos e bióticos necessários e estes dados têm de ser analizados com métodos estatísticos, sobretudo de estatística multivariada.
Parametros importantes para a construção de um sistema de classificação dos habitats da zona marítima portuguesa como amostragens de sedimentos e a granulometria dos sedimentos faltam ainda para partes do espaço português ou ainda não são introduzidas em mapas (veja
"Carta dos Sedimentos Superficiais da Plataforma Continental Portuguesa").
Também será necessário tomar em conta que o aumento do trafego marítimo aumenta constantemente o número de espécies não-autóctonas introduzidas no espaço marítimo português.
4. Paisagens subaquáticas
As classificações e directivas de habitats mencionadas até aqui tomam em conta o conceito dos habitat. No entanto, existem também programas e iniciativas de tomar em conta conceitos mais alargados como o conceito da "paisagem" nos ordenamentos dos terretórios, sobretudo quando há falta de informação biológica dos habitats. Para os territórios terrestres o conceito da paisagem, normalmente antropogenicamente determinada ou modificada, é familiar, mas para os terretórios marítimos este conceito ainda não está muito em uso.
Um conceito e uma definição geo-física de "Marine landscapes" foi desenvolvido por Roff and Taylor em 2000 e aplicda no projecto "
Irish Sea Pilot - a Marine Landscape Classification for the Irish Sea".
O mapeamento de paisagens marinhas serve como alternativa de mapeamento de habitats caso que haja falta de informação biológica. Os habitats são determinados apenas a posteriori à partir das paisagens aquáticas.
A seguir são reproduzidas algumas conclusões do relatório final sobre os resultados do projecto piloto de "Irish Sea Pilot":
...In relation to the coastal and seabed marine landscapes, the results (table 3.5) show that just four of the 18 marine landscape types make up 77% of the area of the Irish Sea Pilot study area. In contrast, 12 of the marine landscape types make up less than 10% of the study area, and seven of these marine landscape types each cover less than 0.5% of the study area. Such scarce types could well merit special protection measures and warrant consideration in the current review of habitats listed on Annex I of the Habitats Directive (EC, 1992)(Rias and Lagoons already appear in Annex I).
There was, generally, a good correlation between the marine landscapes identified and the character of the seabed. However, partly because of the inherent simplification which took place in the generation of the marine landscapes, and partly because the available substrate data does not always reflect the actual condition of the seabed, there is greater variability of seabed characteristics than a straightforward interpretation of the marine landscape map would suggest. The same is true of the biological characterisation; in general the relation between marine landscapes and biological communities is very strong, but locally there can be considerable variation and complexity.
It is apparent from the map of coastal and seabed marine landscapes (figure 3.1) that areas of the Irish Sea differ in their variety of marine landscapes. Some areas are relatively uniform, with one or two marine landscapes, in others many more types of marine landscape are to be found. The grid cell system was used to compare the relative diversity of marine landscape areas, and the results are shown in (figure 3.4). Areas of high marine landscape diversity can be used to identify probable areas of high biodiversity where biological data are scarce, and this approach could be used to identify probable diversity hotspots in such areas. Figure 3.4 indicates areas of high marine landscape diversity off the coasts of Co Antrim and Co Down and eastwards to the Mull of Galloway, off Anglesey, off the coasts of Co Wexford, Co Waterford and Dyfed.
Marine landscapes can be used to predict the susceptibility of human impacts on their biological communities (Tyler-Walters et al., 2003) (table 3.6), but there is a need to use some caution in this. Many of the biological communities which presently occur reflect some modification of the natural state as a result of human activity, and this could have implications for the conclusions reached. For example, areas of seabed subject to strong currents where sediments are mobile could be expected to support biological communities capable of accommodating a level of physical disturbance. If these communities were considered natural for such an area, human activity causing similar disturbance might, therefore, be assumed to be relatively harmless. However, species-rich biogenic reefs may have developed in these areas but have been destroyed by dredging or trawling activity. Continuation of such activities would ensure that such reefs would not re-establish.
Marine landscapes have been used as a surrogate assessment unit during the identification of important marine areas, using the software tool Marxan (Ball and Possingham, 1999) (Lieberknecht et al., 2004b). Note that this work links to the coastal and seabed marine landscapes of the Irish Sea provisional list.
Although the marine landscapes methodology is relatively straightforward, a number of issues have arisen, and these are discussed in further detail below. The marine landscape classification was heavily based on two readily available British Geological Survey (BGS) datasets at a scale of 1:250,000; DigBath250 and DigSBS250. BGS has a considerable amount of data on bedforms and sediments which is not compiled into digital format. These datasets could provide detail at scales of 1:100,000 or larger for important areas of the Irish Sea and other parts of UK waters, which could improve the ‘confidence levels’ of the resulting maps. However, compiling this data and making it available would require funding and investment....
(Em fundo esverdeado: Citação de "The Irish Sea Pilot Project")
Ao "
Irish Sea Pilot" seguiram outros projectos de mapeamento de paisagens marinhas como
UKSeaMap (2004 - 2006), HABMAP (2004 - 2010), BALANCE (2005 - 2007), MESH (2004 - 2008) e EUSeaMap (2008 - 2011), melhorando a metodologia aplicada. A última classificação de paisagens marítimas com atribuição dos habitats EUNIS,
UKSeaMap 2010, para a Grã-Bretanha foi concluida com successo em 2010.
Existe também no trabalho "
Deutsche Marine Biotoptypen" uma tentativa de classificar a "
paisagem marítima" da zona marítima alemã e para aplicar este método indirecto no ordenamento dos habitats marinhos da Alemanha - um trabalho encomendado pelo Ministério do Ambiente (Bundesamt für Naturschutz) da Alemanha.
O conceito da paisagem marítima tem também elevado interesse para Portugal, não apenas devido à existencia de "estruturas" marítimas como os "
canhões" ou
"desfiladeiros submarinos" existentes nas margens continentais (veja: Anexo 3), mas também pela necessidade da elaboração de uma classificação dos habitats marítimos.
Portugal está envolvido no projecto "
Mesh Atlantic" (
Cartografia de habitats dos fundos marinhos do Espaço Atlântico para uma gestão sustentável), em execução desde Janeiro de 2010 e com término previsto para Dezembro de 2012, que pretende compilar toda a informação georreferenciada sobre a distribuição de habitats marinhos no Espaço Atlântico, que seja facilmente acessível e apoie a definição de políticas e a implementação de directivas europeias relativas a zonas costeiras e ao meio marinho.
Para tal, o projecto assentará nos princípios e metodologias sólidas estabelecidas por anteriores projectos europeus, que alargará e adaptará às especificidades do Espaço Atlântico com o intuito de colocar os países desta região a par da situação atingida em grande parte da Europa Central e do Norte.
Tanto os estados membros como a Comissão Europeia carecem de informação georreferenciada sobre os habitats marinhos facilmente acessível, para apoiar a definição de políticas e a implementação de directivas relativas ao meio marinho.
O projecto MeshAtlantic pretende compilar esta informação e produzir mapas harmonizados de habitats marinhos para o Espaço Atlântico (EA), enquanto promove o respectivo uso e serve a comunidade em geral. O projecto assentará nos princípios e metodologias estabelecidas por anteriores projectos europeus, e adapta-las-á ao EA com o intuito de colocar os países desta região a par da situação atingida em Europa do Norte.
Os produtos-chave do projecto consistem em três conjuntos distintos de mapas harmonizados no seio do EA: (i) um mapa global preditivo dos habitats marinhos resultante da compilação de dados oceanográficos e de tipo de fundo, disponível nos vários países (ii) mapas existentes que carecem de aperfeiçoamento e harmonização e (iii) mapas especificamente produzidos para um conjunto de sítios pertencentes à rede Natura 2000.
Estes resultados serão disponibilizados livremente através de um portal internet, interactivo, de mapeamento. Tendo por base um plano de comunicação multi-facetado, o projecto será executado em estreita colaboração com os utilizadores do meio marinho, que desenvolvam actividades nomeadamente no uso sustentável dos seus recursos.(em fundo esverdeado: citação da Descrição do Projecto MeshAtlantic)
5. A partir de mapas para uma gestão dinâmica
Mapas da distribuição dos habitats e das espécies são hoje em dia facilmente produzidos através de um Sistema de Informação Geografica (SIG). Mas um Plano de Ordenamento marítima não tem apenas de garantir um correcto ordenamento espacial mas tem de também tomar em conta processos dinâmicos e as acções que precisam ser coordenadas no tempo. Um acidente por um návio petrolífero pode ter consequências fatais e irreversíveis para os ecossistemas de uma região.
No entanto, os Sistemas de Informação Geográfica (SIGs) que podiam tomar em conta os aspectos dinâmicos de um Plano de Ordamento marítimo ainda estão numa fase experimental de desenvolvimento e não são suficientemente testados para garantir uma tarefa destas já com a segurança necessária.
Assim vai ser necessário ainda algum esforço para chegar a um Plano de Ordenamento Marítimo Português (POEM) que contempla todas as necessidades de uma protecção e conservação do ambiente subaquático marinho de Portugal. Mas estamos convencidos que este plano vai surgir e não vai se limitar a ser apenas um poema.
1 6. Bibliografia
www.inag.pt/index.php?...
A Proposta do Plano de Ordenamento do Espaço Marítimo (POEM) e o respectivo Relatório Ambiental encontram-se concluídos tecnicamente e aprovados pela ...
portal.icnb.pt/.../O...e.../Plano+Sectorial+da+Rede+Natura+2000/
PLANO SECTORIAL DA REDE NATURA 2000. O Plano Sectorial da Rede Natura 2000, PSRN2000, é um instrumento de gestão territorial, que visa a ...
Visitou esta página 2 vezes. Última visita: 01-02-2012
eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri...1992L0043...PT...
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápida1 jan. 2007 – DIRECTIVA 92/43/CEE DO CONSELHO de 21 de Maio de 1992 relativa à preservação dos habitats naturais e da fauna e da flora selvagens ...
portal.icnb.pt/NR/rdonlyres/69E51995.../0/directivaHabitats.pdf
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápida►B. DIRECTIVA 92/43/CEE DO CONSELHO de 21 de Maio de 1992 relativa à preservação dos habitats naturais e da fauna e da flora selvagens. (JO L 206 de ...
Versão actual (2012) da Directiva Habitat em português:
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1992:206:0007:0050:PT:PDF
DAVID W. CONNOR, JAMES H. ALLEN, NEIL GOLDING, KERRY L. HOWELL, LOUISE M. LIEBERKNECHT, KATE O. NORTHEN AND JOHNNY B. REKER (2004)
The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough
ISBN 1 861 07561 8 (internet version)
jncc.defra.gov.uk/MarineHabitatClassification
3 Aug 2011 – Olenin S. and Ducrotoy J.P. (2006). The concept of biotope in marine ecology and coastal management. Marine Pollution Bulletin 53 20-29.
NEHRING, S. & U. ALBRECHT, 2000: Biotop, Habitat, Mikrohabitat - Ein Diskussionsbeitrag zur Begriffsdefinition. - Lauterbornia 38: 75-84.
15. März 2011 – Download 102 Nehring Albrecht 2000 Lauterbornia 38 biotop pdf documents from www.stefannehring.de at @EbookBrowse
EUNIS is the European University Information Systems Organization. It was formed in 1993. It has been registered as a non-profit organization in Paris, France in ...
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápidaJNCC,. Peterborough. www.jncc.gov.uk/MarineHabitatClassification. Davies, C.E., Moss, D. & Hill, M.O. (2004). EUNIS Habitat Classification Revised 2004.
www.eea.europa.eu/pt
A Agência Europeia do Ambiente (AEA) publicou hoje o seu quarto relatório sobre “O Ambiente na Europa – situação actual e perspectivas” – SOER 2010 ...
Temas -
Destaques da AEA na área do ... -
Novos mapas proporcionam
pt.wikipedia.org/wiki/Agência_Europeia_do_Ambiente
A Agência Europeia do Ambiente (AEA) ou EEA (European Environment Agency) é um órgão ... Obtida de "http://pt.wikipedia.org/w/index.php?title=Ag%C3% ...
The European Topic Centre on Nature Protection and Biodiversity. The ETC/NPB supports the EEA in its work of collecting, analysing, evaluating and ...
11 Oct 2011 – Eionet is a partnership network of the European Environment Agency and its member and cooperating countries, connecting National Focal ...
The Marine Habitat Classification for Britain & Ireland (v04.05). The marine habitat classification for Britain and Ireland provides a tool to aid the management ...
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápidade D Connor -
2005 -
Artigos relacionados04/2005. File name: MNCR_04_05_introduction.pdf. Language: English. Number of ... The Marine Habitat Classification for Britain and Ireland Version 04.05 ... Joint Nature Conservation Committee. JNCC. Adviser to the United Kingdom Government on nature conservation issues at a Great Britain, United Kingdom and ...
Information on the UK national suites of sites providing ...
| An important part of JNCC's work concerns species conservation ...
|
List of job current vacancies at JNCC and employment ...
| The majority of JNCC publications are distributed for us by an ...
|
A significant proportion of the UK's total biodiversity is found in the ...
| Special Areas of Conservation (SACs) are strictly protected ...
|
|
www.hidrografico.pt/carta-sedimentos-superficiais.php
A "Carta dos Sedimentos Superficiais da Plataforma Continental Portuguesa" é uma publicação do Instituto Hidrográfico. Esta cartografia, pertencente à “Série ...
dqa.inag.pt/dqa2002/pdf/D_Q.pdf
Formato do ficheiro: PDF/Adobe Acrobat
DIRECTIVA 2000/60/CE DO PARLAMENTO EUROPEU E DO CONSELHO de 23 de Outubro de 2000 que estabelece um quadro de acção comunitária no ...
It implements divisive classification method named TWINSPAN (Two-way Indicator Species Analysis) and analyses datasets provided in one of the data formats ...
DECORANA is a program for ordinating multivariate species data, and will perform correspondence analysis and detrended correspondence analysis (Hill ...
PRIMER-E, multivariate statistics for ecologists. ... PERMANOVA+ for PRIMER 6 Available! star. Details... PRIMER 6. Details... Updates... Try PRIMER 6 now!
PRIMER 6. Details Purchase. For a list of changes to previous ...
| Purchasing. PRIMER 6. Our core package for analysing ...
|
The PRIMER 6 Demo works on Windows 98/Me/NT4/2000/XP ...
| PERMANOVA+ is an add-on package for PRIMER 6. It was ...
|
PRIMER Workshops. classroom.jpg (15810 bytes) · Previous ...
| How to cite PRIMER in your publications. For referencing the ... |
pt.wikipedia.org/wiki/Sistema_de_informação_geográfica
Um Sistema de Informação Geográfica (SIG ou GIS - Geographic Information System, do acrónimo/acrônimo inglês) é um sistema de hardware, software, ...
www.gobiusworld.com/downloads/as-especies-de-kelp/
Em Portugal, a monitorização do estado de conservação de espécies marinhas e do grau de invasão de espécies não autóctones é muito reduzida. Outro factor ...
This paper reports on the work undertaken to collate and analyse geophysical information and identify marine landscapes for the Irish Sea, and also identify their ...
UKSeaMap 2010 - Predictive seabed habitat mapping for UK waters. ... UKSeaMap 2010 - predictive mapping of seabed habitats ...
EUSeaMap - Project overview - Modelling seabed habitats across Europe.
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápidalandscapes (seascapes). The method was extended for UK water by Laffoley et al. (2000) to encounter marine environment conservation at a range of scales ...
Roff, J. C. and Taylor, M. E. (2000), National frameworks for marine conservation — a hierarchical geophysical approach. Aquatic Conservation: Marine and Freshwater Ecosystems, 10: 209–223. doi: 10.1002/1099-0755(200005/06)10:3<209::AID-AQC408>3.0.CO;2-J
17 Aug 2007 – BALANCE – or in full "Baltic Sea Management – Nature ... Identify and collate relevant and available marine data in the Baltic Sea, Kattegat and ...
12 Feb 2008 – HabMap - Habitat mapping for conservation and management of the ... as sensitivity mapping, marine spatial planning and impact modelling.
Formato do ficheiro: PDF/Adobe Acrobat -
Visualização rápidade B für Naturschutz -
2010 -
Artigos relacionadoses auf der Basis vorhandener Daten möglich ist, eine „Karte der marinen Biotoptypen der deut- schen Nord- und Ostsee“ zu generieren. Grundlage für die ...
For an easy introduction to the MESH project you could start by reading the MESH Executive Summary or the Guide to Marine Habitat Mapping but if you already ...
MESH Guide to Marine Habitat Mapping. The MESH Guide to ...
| Gary Greene, Moss Landing Marine Laboratories, USA. The ...
|
Description of the MESH Guide to Marine Habitat Mapping. ... A ...
| Background to the Mapping European Seabed Habitats ... |
Welcome to MeshAtlantic, Mapping Atlantic Area Seabed Habitats. ... The first newsletter of the MeshAtlantic project is out. Follow the link to access the *.pdf file.
Visitou esta página 2 vezes. Última visita: 14-02-2012
Universidade de Aveiro | website. CESAM - Centro de Estudos do ...
| Workshop "O mapeamento de habitats e o conhecimento do ...
|
Video Survey Techniques workshop: All the way from ...
| Mesh Atlantic. |; The Project; |; Outputs; |; Follow and Join ...
|
Documents. MeshAtlantic Flyer. Download here MeshAtlantic ...
| MeshAtlantic Questionnaire. This questionnaire was set up to ...
|
|
Ocean margins are the transitional zones between the oceans and continents. ... Springer, 2003 - Science - 495 pages .... Resultados de 1 a 1 sobre 1 resultados encontrados. ... TÍTULO: Ocean margin systems / editors G. Wefer... [et al.] .
www.cienciaviva.pt/projectos/semapp/canhoes.asp
Os canhões submarinos são vales cavados nas Margens continentais que servem de ... Os canhões submarinos variam consideravelmente em tamanho.
7. Anexos
Anexo 1
Exemplo de uma hierárquia de uma Classificação dos Habitats Marinhos - Classificação dos Habitats Marinhos da Grã-Bretanha e da Irlanda (Marine Habitat Classification for Britain and Ireland)
 |  |  |
Marine Habitat Classification Hierarchy |
 |
Marine Habitats Classification |  Littoral rock (and other hard substrata) |   High energy littoral rock |    Mussel and/or barnacle communities |     Mytilus edulis and barnacles on very exposed eulittoral rock |     Chthamalus spp. on exposed eulittoral rock |      Chthamalus spp. on exposed upper eulittoral rock |      Chthamalus spp. and Lichina pygmaea on steep exposed upper eulittoral rock |     Semibalanus balanoides on exposed to moderately exposed or vertical sheltered eulittoral rock |      Semibalanus balanoides, Patella vulgata and Littorina spp. on exposed to moderately exposed or vertical sheltered eulittoral rock |      Semibalanus balanoides, Fucus vesiculosus and red seaweeds on exposed to moderately exposed eulittoral rock |      Semibalanus balanoides and Littorina spp. on exposed to moderately exposed eulittoral boulders and cobbles |    Robust fucoid and/or red seaweed communities |     Fucus distichus and Fucus spiralis f. nana on extremely exposed upper shore rock |     Corallina officinalis on exposed to moderately exposed lower eulittoral rock |      Corallina officinalis and Mastocarpus stellatus on exposed to moderately exposed lower eulittoral rock |      Corallina officinalis, Himanthalia elongata and Patella ulyssiponensis on very exposed lower eulittoral rock |     Himanthalia elongata and red seaweeds on exposed to moderately exposed lower eulittoral rock |     Palmaria palmata on very exposed to moderately exposed lower eulittoral rock |     Mastocarpus stellatus and Chondrus crispus on very exposed to moderately exposed lower eulittoral rock |     Osmundea pinnatifida on moderately exposed mid eulittoral rock |     Ceramium sp. and piddocks on eulittoral fossilised peat |    Fucoids in tide-swept conditions |     Ascophyllum nodosum, sponges and ascidians on tide-swept mid eulittoral rock |     Fucus serratus, sponges and ascidians on tide-swept lower eulittoral rock |     Fucus serratus with sponges, ascidians and red seaweeds on tide-swept lower eulittoral mixed substrata |   Moderate energy littoral rock |    Mussels and fucoids on moderately exposed shores |     Mytilus edulis and Fucus vesiculosus on moderately exposed mid eulittoral rock |     Mytilus edulis, Fucus serratus and red seaweeds on moderately exposed lower eulittoral rock |     Mytilus edulis and piddocks on eulittoral firm clay |    Barnacles and fucoids on moderately exposed shores |     Pelvetia canaliculata and barnacles on moderately exposed littoral fringe rock |     Fucus spiralis on exposed to moderately exposed upper eulittoral rock |     Fucus vesiculosus and barnacle mosaics on moderately exposed mid eulittoral rock |     Fucus serratus on moderately exposed lower eulittoral rock |      Fucus serratus and red seaweeds on moderately exposed lower eulittoral rock |      Fucus serratus and under-boulder fauna on exposed to moderately exposed lower eulittoral boulders |      Fucus serratus and piddocks on lower eulittoral soft rock |     Rhodothamniella floridula on sand-scoured lower eulittoral rock |   Low energy littoral rock |    Fucoids on sheltered marine shores |     Pelvetia canaliculata on sheltered littoral fringe rock |     Fucus spiralis on sheltered upper eulittoral rock |      Fucus spiralis on full salinity sheltered upper eulittoral rock |      Fucus spiralis on full salinity upper eulittoral mixed substrata |     Fucus vesiculosus on moderately exposed to sheltered mid eulittoral rock |      Fucus vesiculosus on full salinity moderately exposed to sheltered mid eulittoral rock |      Fucus vesiculosus on mid eulittoral mixed substrata |     Ascophyllum nodosum on very sheltered mid eulittoral rock |      Ascophyllum nodosum on full salinity mid eulittoral rock |      Ascophyllum nodosum on full salinity mid eulittoral mixed substrata |     Fucus serratus on sheltered lower eulittoral rock |      Fucus serratus on full salinity sheltered lower eulittoral rock |      Fucus serratus on full salinity lower eulittoral mixed substrata |    Fucoids in variable salinity |     Pelvetia canaliculata on sheltered variable salinity littoral fringe rock |     Fucus spiralis on sheltered variable salinity upper eulittoral rock |     Fucus vesiculosus on variable salinity mid eulittoral boulders and stable mixed substrata |     Ascophyllum nodosum and Fucus vesiculosus on variable salinity mid eulittoral rock |     Ascophyllum nodosum ecad mackaii beds on extremely sheltered mid eulittoral mixed substrata |     Fucus serratus and large Mytilus edulis on variable salinity lower eulittoral rock |     Fucus ceranoides on reduced salinity eulittoral rock |   Features of littoral rock |    Lichens or small green algae on supralittoral and littoral fringe rock |     Yellow and grey lichens on supralittoral rock |     Prasiola stipitata on nitrate-enriched supralittoral or littoral fringe rock |     Verrucaria maura on littoral fringe rock |      Verrucaria maura and sparse barnacles on exposed littoral fringe rock |      Verrucaria maura on very exposed to very sheltered upper littoral fringe rock |     Blidingia spp. on vertical littoral fringe soft rock |     Ulothrix flacca and Urospora spp. on freshwater-influenced vertical littoral fringe soft rock |    Rockpools |     Green seaweeds (Enteromorpha spp. and Cladophora spp.) in shallow upper shore rockpools |     Coralline crust-dominated shallow eulittoral rockpools |      Coralline crusts and Corallina officinalis in shallow eulittoral rockpools |      Coralline crusts and Paracentrotus lividus in shallow eulittoral rockpools |      Bifurcaria bifurcata in shallow eulittoral rockpools |      Cystoseira spp. in eulittoral rockpools |     Fucoids and kelp in deep eulittoral rockpools |      Sargassum muticum in eulittoral rockpools |     Seaweeds in sediment-floored eulittoral rockpools |     Hydroids, ephemeral seaweeds and Littorina littorea in shallow eulittoral mixed substrata pools |    Littoral caves and overhangs |     Chrysophyceae and Haptophyceae on vertical upper littoral fringe soft rock |     Green algal films on upper and mid-shore cave walls and ceilings |     Audouinella purpurea and Pilinia maritima crusts on upper and mid-shore cave walls and ceilings |     Audouinella purpurea and Cladophora rupestris on upper to mid-shore cave walls |     Verrucaria mucosa and/or Hildenbrandia rubra on upper to mid shore cave walls |     Sponges and shade-tolerant red seaweeds on overhanging lower eulittoral bedrock and in cave entrances |      Sponges, shade-tolerant red seaweeds and Dendrodoa grossularia on wave-surged overhanging lower eulittoral bedrock and caves |     Sponges, bryozoans and ascidians on deeply overhanging lower shore bedrock or caves |     Faunal crusts on wave-surged littoral cave walls |     Sparse fauna (barnacles and spirorbids) on sand/pebble-scoured rock in littoral caves |     Barren and/or boulder-scoured littoral cave walls and floors |    Ephemeral green or red seaweed communities (freshwater or sand-influenced) |    Enteromorpha spp. on freshwater-influenced and/or unstable upper eulittoral rock |    Porphyra purpurea and Enteromorpha spp. on sand-scoured mid or lower eulittoral rock |    Ephemeral green and red seaweeds on variable salinity and/or disturbed eulittoral mixed substrata |    Barnacles and Littorina spp. on unstable eulittoral mixed substrata |  Littoral sediment |   Littoral coarse sediment |    Shingle (pebble) and gravel shores |     Barren littoral shingle |     Pectenogammarus planicrurus in mid shore well-sorted gravel or coarse sand |   Littoral sand |    Strandline |     Talitrids on the upper shore and strand-line |     Mytilus edulis and Fabricia sabella in littoral mixed sediment |    Barren or amphipod-dominated mobile sand shores |     Barren littoral coarse sand |     Oligochaetes in littoral mobile sand |      Oligochaetes in full salinity littoral mobile sand |      Oligochaetes in variable salinity littoral mobile sand |     Amphipods and Scolelepis spp. in littoral medium-fine sand |      Scolelepis spp. in littoral mobile sand |      Eurydice pulchra in littoral mobile sand |      Pontocrates arenarius in littoral mobile sand |    Polychaete/amphipod-dominated fine sand shores |     Polychaetes in littoral fine sand |      Polychaetes, including Paraonis fulgens, in littoral fine sand |      Polychaetes and Angulus tenuis in littoral fine sand |      Nephtys cirrosa-dominated littoral fine sand |    Polychaete/bivalve-dominated muddy sand shores |     Macoma balthica and Arenicola marina in littoral muddy sand |     Cerastoderma edule and polychaetes in littoral muddy sand |     Hediste diversicolor, Macoma balthica and Eteone longa in littoral muddy sand |     Bathyporeia pilosa and Corophium arenarium in littoral muddy sand |     Lanice conchilega in littoral sand |   Littoral mud |    Polychaete/bivalve-dominated mid estuarine mud shores |     Nephtys hombergii, Macoma balthica and Streblospio shrubsolii in littoral sandy mud |     Hediste diversicolor and Macoma balthica in littoral sandy mud |     Hediste diversicolor, Macoma balthica and Scrobicularia plana in littoral sandy mud |    Polychaete/oligochaete-dominated upper estuarine mud shores |     Nephtys hombergii and Streblospio shrubsolii in littoral mud |     Hediste diversicolor in littoral mud |      Hediste diversicolor and Streblospio shrubsolii in littoral sandy mud |      Hediste diversicolor and Corophium volutator in littoral mud |      Hediste diversicolor and oligochaetes in littoral mud |     Tubificoides benedii and other oligochaetes in littoral mud |   Littoral mixed sediment |    Hediste-dominated gravelly sandy mud shores |     Hediste diversicolor in littoral gravelly muddy sand and gravelly sandy mud |      Hediste diversicolor and Macoma balthica in littoral gravelly mud |      Hediste diversicolor and Scrobicularia plana in littoral gravelly mud |      Hediste diversicolor and Streblospio shrubsolii in littoral gravelly sandy mud |      Hediste diversicolor, cirratulids and Tubificoides spp. in littoral gravelly sandy mud |      Hediste diversicolor and Corophium volutator in littoral gravelly sandy mud |    Species-rich mixed sediment shores |     Cirratulids and Cerastoderma edule in littoral mixed sediment |   Littoral macrophyte-dominated sediment |    Saltmarsh |    Littoral seagrass beds |     Zostera noltii beds in littoral muddy sand |   Littoral biogenic reefs |    Littoral Sabellaria honeycomb worm reefs |     Sabellaria alveolata reefs on sand-abraded eulittoral rock |    Littoral mussel beds on sediment |    Mytilus edulis beds on littoral sediments |    Mytilus edulis beds on littoral mixed substrata |    Mytilus edulis beds on littoral sand |    Mytilus edulis beds on littoral mud |  Infralittoral rock (and other hard substrata) |   High energy infralittoral rock |    Kelp with cushion fauna and/or foliose red seaweeds |     Alaria esculenta on exposed sublittoral fringe bedrock |      Alaria esculenta, Mytilus edulis and coralline crusts on very exposed sublittoral fringe bedrock |      Alaria esculenta and Laminaria digitata on exposed sublittoral fringe bedrock |     Alaria esculenta forest with dense anemones and crustose sponges on extremely exposed infralittoral bedrock |     Laminaria hyperborea forest with a faunal cushion (sponges and polyclinids) and foliose red seaweeds on very exposed upper infralittoral rock |     Sparse Laminaria hyperborea and dense Paracentrotus lividus on exposed infralittoral limestone |     Laminaria hyperborea with dense foliose red seaweeds on exposed infralittoral rock |      Laminaria hyperborea forest with dense foliose red seaweeds on exposed upper infralittoral rock |      Laminaria hyperborea park with dense foliose red seaweeds on exposed lower infralittoral rock |      Mixed Laminaria hyperborea and Laminaria ochroleuca forest on exposed infralittoral rock |     Foliose red seaweeds on exposed lower infralittoral rock |      Foliose red seaweeds with dense Dictyota dichotoma and/or Dictyopteris membranacea on exposed lower infralittoral rock |     Laminaria hyperborea and red seaweeds on exposed vertical rock |    Sediment-affected or disturbed kelp and seaweed communities |     Saccorhiza polyschides and other opportunistic kelps on disturbed sublittoral fringe rock |     Laminaria saccharina and/or Saccorhiza polyschides on exposed infralittoral rock |     Laminaria saccharina, Chorda filum and dense red seaweeds on shallow unstable infralittoral boulders or cobbles |     Dense Desmarestia spp. with filamentous red seaweeds on exposed infralittoral cobbles, pebbles and bedrock |     Mixed kelps with scour-tolerant and opportunistic foliose red seaweeds on scoured or sand-covered infralittoral rock |     Halidrys siliquosa and mixed kelps on tide-swept infralittoral rock with coarse sediment |     Polyides rotundus, Ahnfeltia plicata and Chondrus crispus on sand-covered infralittoral rock |   Moderate energy infralittoral rock |    Kelp and red seaweeds (moderate energy infralittoral rock) |     Laminaria digitata on moderately exposed sublittoral fringe rock |      Laminaria digitata on moderately exposed sublittoral fringe bedrock |      Laminaria digitata and under-boulder fauna on sublittoral fringe boulders |      Laminaria digitata and piddocks on sublittoral fringe soft rock |     Laminaria hyperborea on tide-swept, infralittoral rock |      Laminaria hyperborea forest, foliose red seaweeds and a diverse fauna on tide-swept upper infralittoral rock |      Laminaria hyperborea park with hydroids, bryozoans and sponges on tide-swept lower infralittoral rock |     Laminaria hyperborea on tide-swept infralittoral mixed substrata |      Laminaria hyperborea forest and foliose red seaweeds on tide-swept upper infralittoral mixed substrata |      Laminaria hyperborea park and foliose red seaweeds on tide-swept lower infralittoral mixed substrata |     Laminaria hyperborea and foliose red seaweeds on moderately exposed infralittoral rock |      Laminaria hyperborea forest and foliose red seaweeds on moderately exposed upper infralittoral rock |      Laminaria hyperborea park and foliose red seaweeds on moderately exposed lower infralittoral rock |      Grazed Laminaria hyperborea forest with coralline crusts on upper infralittoral rock |      Grazed Laminaria hyperborea park with coralline crusts on lower infralittoral rock |      Sabellaria spinulosa with kelp and red seaweeds on sand-influenced infralittoral rock |     Dense foliose red seaweeds on silty moderately exposed infralittoral rock |     Laminaria hyperborea on moderately exposed vertical rock. |     Hiatella arctica and seaweeds on vertical limestone / chalk. |    Kelp and seaweed communities in tide-swept sheltered conditions |     Laminaria digitata, ascidians and bryozoans on tide-swept sublittoral fringe rock |     Mixed kelp with foliose red seaweeds, sponges and ascidians on sheltered tide-swept infralittoral rock |     Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids |     Laminaria saccharina with foliose red seaweeds and ascidians on sheltered tide-swept infralittoral rock |     Filamentous red seaweeds, sponges and Balanus crenatus on tide-swept variable-salinity infralittoral rock |   Low energy infralittoral rock |    Silted kelp communities (sheltered infralittoral rock) |     Mixed Laminaria hyperborea and Laminaria ochroleuca forest on moderately exposed or sheltered infralittoral rock |     Mixed Laminaria hyperborea and Laminaria saccharina on sheltered infralittoral rock |      Mixed Laminaria hyperborea and Laminaria saccharina forest on sheltered upper infralittoral rock |      Mixed Laminaria hyperborea and Laminaria saccharina park on sheltered lower infralittoral rock |      Grazed, mixed Laminaria hyperborea and Laminaria saccharina on sheltered infralittoral rock |     Laminaria saccharina on very sheltered infralittoral rock |      Laminaria saccharina and Laminaria digitata on sheltered sublittoral fringe rock |      Laminaria saccharina forest on very sheltered upper infralittoral rock |      Laminaria saccharina park on very sheltered lower infralittoral rock |      Grazed Laminaria saccharina with Echinus, brittlestars and coralline crusts on sheltered infralittoral rock |     Silted cape-form Laminaria hyperborea on very sheltered infralittoral rock |     Sargassum muticum on shallow slightly tide-swept infralittoral mixed substrata |    Kelp in variable or reduced salinity |     Codium spp. with red seaweeds and sparse Laminaria saccharina on shallow, heavily-silted, very sheltered infralittoral rock |     Laminaria saccharina and Psammechinus miliaris on variable salinity grazed infralittoral rock |     Laminaria saccharina with Phyllophora spp. and filamentous green seaweeds on variable or reduced salinity infralittoral rock |    Faunal communities on variable or reduced salinity infralittoral rock |     Mytilus edulis beds on reduced salinity infralittoral rock |     Cordylophora caspia and Electra crustulenta on reduced salinity infralittoral rock |     Hartlaubella gelatinosa and Conopeum reticulum on low salinity infralittoral mixed substrata |    Submerged fucoids, green or red seaweeds (low salinity infralittoral rock) |     Ascophyllum nodosum with epiphytic sponges and ascidians on variable salinity infralittoral rock |     Mixed fucoids, Chorda filum and green seaweeds on reduced salinity infralittoral rock |     Polyides rotundus and/or Furcellaria lumbricalis on reduced salinity infralittoral rock |     Fucus ceranoides and Enteromorpha spp. on low salinity infralittoral rock |   Features of infralittoral rock |    Infralittoral surge gullies and caves |     Foliose seaweeds and coralline crusts in surge gully entrances |     Anemones, including Corynactis viridis, crustose sponges and colonial ascidians on very exposed or wave surged vertical infralittoral rock |     Crustose sponges and colonial ascidians with Dendrodoa grossularia or barnacles on wave-surged infralittoral rock |     Dendrodoa grossularia and Clathrina coriacea on wave-surged vertical infralittoral rock |     Crustose sponges on extremely wave-surged infralittoral cave or gully walls |     Coralline crusts in surge gullies and scoured infralittoral rock |      Balanus crenatus and/or Pomatoceros triqueter with spirorbid worms and coralline crusts on severely-scoured vertical infralittoral rock |      Coralline crusts and crustaceans on mobile boulders or cobbles in surge gullies |    Infralittoral fouling seaweed communities |  Circalittoral rock (and other hard substrata) |   High energy circalittoral rock |    Very tide-swept faunal communities |     Balanus crenatus and Tubularia indivisa on extremely tide-swept circalittoral rock |     Tubularia indivisa on tide-swept circalittoral rock |      Tubularia indivisa and cushion sponges on tide-swept turbid circalittoral bedrock |      Alcyonium digitatum with dense Tubularia indivisa and anemones on strongly tide-swept circalittoral rock |    Deep sponge communities (circalittoral) |     Phakellia ventilabrum and Axinellid sponges on deep, wave- exposed circalittoral rock |    Mixed faunal turf communities |     Bryozoan turf and erect sponges on tide-swept circalittoral rock |      Eunicella verrucosa and Pentapora foliacea on wave-exposed circalittoral rock |      Mixed turf of bryozoans and erect sponges with Dysidia fragilis and Actinothoe sphyrodeta on tide-swept wave-exposed circalittoral rock |      Mixed turf of bryozoans and erect sponges with Sagartia elegans on tide-swept ciraclittoral rock |     Corynactis viridis and a mixed turf of crisiids, Bugula, Scrupocellaria, and Cellaria on moderately tide-swept exposed circalittoral rock |     Mixed turf of hydroids and large ascidians with Swiftia pallida and Caryophyllia smithii on weakly tide-swept circalittoral rock |     Flustra foliacea and colonial ascidians on tide-swept moderately wave-exposed circalittoral rock |      Polyclinum aurantium and Flustra foliacea on sand-scoured tide-swept moderately wave-exposed circalittoral rock |      Flustra foliacea, small solitary and colonial ascidians on tide-swept circalittoral bedrock or boulders |      Flustra foliacea and colonial ascidians on tide-swept exposed circalittoral mixed substrata |     Sparse sponges, Nemertesia spp. and Alcyonidium diaphanum on circalittoral mixed substrata |     Suberites spp. with a mixed turf of crisiids and Bugula spp. on heavily silted moderately wave-exposed shallow circalittoral rock |     Flustra foliacea and Haliclona oculata with a rich faunal turf on tide-swept circalittoral mixed substrata |     Molgula manhattensis with a hydroid and bryozoan turf on tide-swept moderately wave-exposed circalittoral rock |     Sponges and anemones on vertical circalittoral bedrock |   Moderate energy circalittoral rock |    Echinoderms and crustose communities |     Caryophyllia smithii and Swiftia pallida on circalittoral rock |      Caryophyllia smithii, Swiftia pallida and Alcyonium glomeratum on wave-sheltered circalittoral rock |      Caryophyllia smithii, Swiftia pallida and large solitary ascidians on exposed or moderately exposed circalittoral rock |     Caryophyllia smithii, sponges and crustose communities on wave-exposed circalittoral rock |      Brittlestars overlying coralline crusts, Parasmittina trispinosa and Caryophyllia smithii on wave-exposed circalittoral rock |      Caryophyllia smithii and sponges with Pentapora foliacea, Porella compressa and crustose communities on wave-exposed circalittoral rock |     Urticina felina and sand-tolerant fauna on sand-scoured or covered circalittoral rock |     Faunal and algal crusts on exposed to moderately wave-exposed circalittoral rock |      Flustra foliacea on slightly scoured silty circalittoral rock |      Alcyonium digitatum, Pomatoceros triqueter, algal and bryozoan crusts on wave-exposed circalittoral rock |      Alcyonium digitatum with Securiflustra securifrons on tide-swept moderately wave-exposed circalittoral rock |      Brittlestars on faunal and algal encrusted exposed to moderately wave-exposed circalittoral rock |      Faunal and algal crusts with Pomatoceros triqueter and sparse Alcyonium digitatum on exposed to moderately wave-exposed circalittoral rock |      Caryophyllia smithii with faunal and algal crusts on moderately wave-exposed circalittoral rock |     Alcyonium digitatum and faunal crust communities on vertical circalittoral bedrock |    Circalittoral Sabellaria reefs (on rock) |     Sabellaria spinulosa encrusted circalittoral rock |      Sabellaria spinulosa with a bryozoan turf and barnacles on silty turbid circalittoral rock |      Sabellaria spinulosa, didemnids and other small ascidians on tide-swept moderately wave-exposed circalittoral rock |    Soft rock communities |     Piddocks with a sparse associated fauna in sublittoral very soft chalk or clay |     Polydora sp. tubes on moderately exposed sublittoral soft rock |     Hiatella-bored vertical sublittoral limestone rock |    Circalittoral mussel beds on rock |     Mytilus edulis beds with hydroids and ascidians on tide-swept exposed to moderately wave-exposed circalittoral rock |     Musculus discors beds on moderately exposed circalittoral rock |    Circalittoral faunal communities in variable salinity |     Cushion sponges and hydroids on turbid tide-swept sheltered circalittoral rock |      Cushion sponges, hydroids and ascidians on turbid tide-swept sheltered circalittoral rock |      Cushion sponges and hydroids on turbid tide-swept variable salinity sheltered circalittoral rock |     Halichondria bowerbanki, Eudendrium arbusculum and Eucratea loricata on reduced salinity tide-swept circalittoral mixed substrata |   Low energy circalittoral rock |    Brachiopod and ascidian communities |     Solitary ascidians, including Ascidia mentula and Ciona intestinalis, on wave-sheltered circalittoral rock |      Solitary ascidians, including Ascidia mentula and Ciona intestinalis, with Antedon spp. on wave-sheltered circalittoral rock |      Dense brittlestars with sparse Ascidia mentula and Ciona intestinalis on sheltered circalittoral mixed substrata |     Large solitary ascidians and erect sponges on wave-sheltered circalittoral rock |     Antedon spp., solitary ascidians and fine hydroids on sheltered circalittoral rock |     Neocrania anomala and Protanthea simplex on sheltered circalittoral rock |     Neocrania anomala and Protanthea simplex on very wave-sheltered circalittoral rock |     Neocrania anomala, Dendrodoa grossularia and Sarcodictyon roseum on variable salinity circalittoral rock |   Features of circalittoral rock |    Circalittoral caves and overhangs |     Sponges, cup corals and anthozoans on shaded or overhanging circalittoral rock |    Circalittoral fouling faunal communities |    Alcyonium digitatum and Metridium senile on moderately wave-exposed circalittoral steel wrecks |    Ascidiella aspersa on circalittoral artificial substrata |  Sublittoral sediment |  Sublittoral coarse sediment (unstable cobbles and pebbles, gravels and coarse sands) |   Sublittoral coarse sediment in variable salinity (estuaries) |   Infralittoral coarse sediment |    Sparse fauna on highly mobile sublittoral shingle (cobbles and pebbles) |    Halcampa chrysanthellum and Edwardsia timida on sublittoral clean stone gravel |    Moerella spp. with venerid bivalves in infralittoral gravelly sand |    Hesionura elongata and Microphthalmus similis with other interstitial polychaetes in infralittoral mobile coarse sand |    Glycera lapidum in impoverished infralittoral mobile gravel and sand |    Cumaceans and Chaetozone setosa in infralittoral gravelly sand |    Dense Lanice conchilega and other polychaetes in tide-swept infralittoral sand and mixed gravelly sand |   Circalittoral coarse sediment |    Pomatoceros triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles |    Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel |    Protodorvillea kefersteini and other polychaetes in impoverished circalittoral mixed gravelly sand |    Neopentadactyla mixta in circalittoral shell gravel or coarse sand |    Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel |   Offshore circalittoral coarse sediment |    Glycera lapidum, Thyasira spp. and Amythasides macroglossus in offshore gravelly sand |    Hesionura elongata and Protodorvillea kefersteini in offshore coarse sand |  Sublittoral sands and muddy sands |   Sublittoral sand in low or reduced salinity (lagoons) |   Sublittoral sand in variable salinity (estuaries) |    Infralittoral mobile sand in variable salinity (estuaries) |    Nephtys cirrosa and Macoma balthica in variable salinity infralittoral mobile sand |    Neomysis integer and Gammarus spp. in fluctuating low salinity infralittoral mobile sand |   Infralittoral fine sand |    Infralittoral mobile clean sand with sparse fauna |    Sertularia cupressina and Hydrallmania falcata on tide-swept sublittoral sand with cobbles or pebbles. |    Nephtys cirrosa and Bathyporeia spp. in infralittoral sand |    Semi-permanent tube-building amphipods and polychaetes in sublittoral sand |   Infralittoral muddy sand |    Echinocardium cordatum and Ensis spp. in lower shore and shallow sublittoral slightly muddy fine sand |    Fabulina fabula and Magelona mirabilis with venerid bivalves and amphipods in infralittoral compacted fine muddy sand |    Arenicola marina in infralittoral fine sand or muddy sand |    Spisula subtruncata and Nephtys hombergii in shallow muddy sand |   Circalittoral fine sand |    Echinocyamus pusillus, Ophelia borealis and Abra prismatica in circalittoral fine sand |    Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand |   Circalittoral muddy sand |    Abra alba and Nucula nitidosa in circalittoral muddy sand or slightly mixed sediment |    Amphiura brachiata with Astropecten irregularis and other echinoderms in circalittoral muddy sand |   Offshore circalittoral sand |    Maldanid polychaetes and Eudorellopsis deformis in offshore circalittoral sand or muddy sand |    Owenia fusiformis and Amphiura filiformis in offshore circalittoral sand or muddy sand |  Sublittoral cohesive mud and sandy mud communities |   Sublittoral mud in low or reduced salinity (lagoons) |   Sublittoral mud in variable salinity (estuaries) |    Polydora ciliata and Corophium volutator in variable salinity infralittoral firm mud or clay |    Aphelochaeta marioni and Tubificoides spp. in variable salinity infralittoral mud |    Nephtys hombergii and Tubificoides spp. in variable salinity infralittoral soft mud |    Infralittoral fluid mobile mud |    Capitella capitata and Tubificoides spp. in reduced salinity infralittoral muddy sediment |    Oligochaetes in variable or reduced salinity infralittoral muddy sediment |    Limnodrilus hoffmeisteri, Tubifex tubifex and Gammarus spp. in low salinity infralittoral muddy sediment |   Infralittoral sandy mud |    Nephtys hombergii and Macoma balthica in infralittoral sandy mud |    Sagartiogeton undatus and Ascidiella aspersa on infralittoral sandy mud |    Mysella bidentata and Abra spp. in infralittoral sandy mud |    Melinna palmata with Magelona spp. and Thyasira spp. in infralittoral sandy mud |    Ampelisca spp., Photis longicaudata and other tube-building amphipods and polychaetes in infralittoral sandy mud |    Capitella capitata in enriched sublittoral muddy sediments |   Infralittoral fine mud |    Cerastoderma edule with Abra nitida in infralittoral mud |    Arenicola marina in infralittoral mud |    Philine aperta and Virgularia mirabilis in soft stable infralittoral mud |    Ocnus planci aggregations on sheltered sublittoral muddy sediment |    Beggiatoa spp. on anoxic sublittoral mud |   Circalittoral sandy mud |    Amphiura filiformis, Mysella bidentata and Abra nitida in circalittoral sandy mud |    Thyasira spp. and Nuculoma tenuis in circalittoral sandy mud |    Amphiura filiformis and Nuculoma tenuis in circalittoral and offshore sandy mud |    Virgularia mirabilis and Ophiura spp. with Pecten maximus on circalittoral sandy or shelly mud |     Virgularia mirabilis and Ophiura spp. with Pecten maximus, hydroids and ascidians on circalittoral sandy or shelly mud with stones |    Lagis koreni and Phaxas pellucidus in circalittoral sandy mud |   Circalittoral fine mud |    Seapens and burrowing megafauna in circalittoral fine mud |     Seapens, including Funiculina quadrangularis, and burrowing megafauna in undisturbed circalittoral fine mud |    Burrowing megafauna and Maxmuelleria lankesteri in circalittoral mud |    Brissopsis lyrifera and Amphiura chiajei in circalittoral mud |   Offshore circalittoral mud |    Ampharete falcata turf with Parvicardium ovale on cohesive muddy sediment near margins of deep stratified seas |    Foraminiferans and Thyasira sp. in deep circalittoral fine mud |    Styela gelatinosa, Pseudamussium septemradiatum and solitary ascidians on sheltered deep circalittoral muddy sediment |    Capitella capitata and Thyasira spp. in organically-enriched offshore circalittoral mud and sandy mud |     Capitella capitata, Thyasira spp. and Ophryotrocha dubia in organically-enriched offshore circalittoral sandy mud |    Levinsenia gracilis and Heteromastus filifirmis in offshore circalittoral mud and sandy mud |    Paramphinome jeffreysii, Thyasira spp. and Amphiura filiformis in offshore circalittoral sandy mud |    Myrtea spinifera and polychaetes in offshore circalittoral sandy mud |  Sublittoral mixed sediment |   Sublittoral mixed sediment in low or reduced salinity (lagoons) |   Sublittoral mixed sediment in variable salinity (estuaries) |    Aphelochaeta spp. and Polydora spp. in variable salinity infralittoral mixed sediment |    Crepidula fornicata and Mediomastus fragilis in variable salinity infralittoral mixed sediment |   Infralittoral mixed sediment |    Crepidula fornicata with ascidians and anemones on infralittoral coarse mixed sediment |    Sabella pavonina with sponges and anemones on infralittoral mixed sediment |    Venerupis senegalensis, Amphipholis squamata and Apseudes latreilli in infralittoral mixed sediment |    Limaria hians beds in tide-swept sublittoral muddy mixed sediment |    Ostrea edulis beds on shallow sublittoral muddy mixed sediment |   Circalittoral mixed sediment |    Cerianthus lloydii and other burrowing anemones in circalittoral muddy mixed sediment |     Cerianthus lloydii with Nemertesia spp. and other hydroids in circalittoral muddy mixed sediment |    Sparse Modiolus modiolus, dense Cerianthus lloydii and burrowing holothurians on sheltered circalittoral stones and mixed sediment |    Mysella bidentata and Thyasira spp. in circalittoral muddy mixed sediment |    Flustra foliacea and Hydrallmania falcata on tide-swept circalittoral mixed sediment |    Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment |   Offshore circalittoral mixed sediment |    Polychaete-rich deep Venus community in offshore mixed sediments |  Sublittoral macrophyte-dominated communities on sediments |   Maerl beds |    Phymatolithon calcareum maerl beds in infralittoral clean gravel or coarse sand |     Phymatolithon calcareum maerl beds with red seaweeds in shallow infralittoral clean gravel or coarse sand |     Phymatolithon calcareum maerl beds with Neopentadactyla mixta and other echinoderms in deeper infralittoral clean gravel or coarse sand |    Lithothamnion corallioides maerl beds on infralittoral muddy gravel |    Lithophyllum fasciculatum maerl beds on infralittoral mud |    Lithothamnion glaciale maerl beds in tide-swept variable salinity infralittoral gravel |   Kelp and seaweed communities on sublittoral sediment |    Laminaria saccharina and red seaweeds on infralittoral sediments |     Red seaweeds and kelps on tide-swept mobile infralittoral cobbles and pebbles |     Laminaria saccharina and robust red algae on infralittoral gravel and pebbles |     Laminaria saccharina and filamentous red algae on infralittoral sand |     Laminaria saccharina with red and brown seaweeds on lower infralittoral muddy mixed sediment |    Laminaria saccharina and Chorda filum on sheltered upper infralittoral muddy sediment |    Laminaria saccharina with Psammechinus miliaris and/or Modiolus modiolus on variable salinity infralittoral mixed sediment |    Laminaria saccharina, Gracilaria gracilis and brown seaweeds on full salinity infralittoral sediment |    Laminaria saccharina and Gracilaria gracilis with sponges and ascidians on variable salinity infralittoral sediment |    Mats of Trailliella on infralittoral muddy gravel |    Loose-lying mats of Phyllophora crispa on infralittoral muddy sediment |    Filamentous green seaweeds on low salinity infralittoral mixed sediment or rock |   Sublittoral seagrass beds |    Zostera marina/angustifolia beds on lower shore or infralittoral clean or muddy sand |    Ruppia maritima in reduced salinity infralittoral muddy sand |   Angiosperm communities in reduced salinity |    Potamogeton pectinatus community |    Phragmites australis swamp and reed beds |  Sublittoral biogenic reefs on sediment |  Polychaete worm reefs (on sublittoral sediment) |   Sabellaria spinulosa on stable circalittoral mixed sediment |   Sabellaria alveolata on variable salinity sublittoral mixed sediment |   Serpula vermicularis reefs on very sheltered circalittoral muddy sand |  Sublittoral mussel beds (on sublittoral sediment) |   Modiolus modiolus beds with hydroids and red seaweeds on tide-swept circalittoral mixed substrata |   Modiolus modiolus beds on open coast circalittoral mixed sediment |   Modiolus modiolus beds with fine hydroids and large solitary ascidians on very sheltered circalittoral mixed substrata |   Modiolus modiolus beds with Chlamys varia, sponges, hydroids and bryozoans on slightly tide-swept very sheltered circalittoral mixed substrata |   Mytilus edulis beds on sublittoral sediment |  Coral reefs |  Lophelia reefs |
|  |
 |
(clique acima do habitat desejado para seguir o link)
Anexo 2
Para uma boa introdução da metodologia utilizada no desenvolvimento da Classificação dos Habitats da Grã-Bretanha e da Irlanda que pode servir de modelo para uma futura classificação dos habitats marinhos de Portugal, reproduzimos aqui a página original da descrição da metodologia em inglês:
Classification development - approach and methods usedReview of classification systems and literatureBefore embarking on the development of the MNCR BioMar classification (Connor et al. 1997a, b), a review of existing classification systems was undertaken (Hiscock & Connor 1991). From these, proposals for a classification structure (Connor et al. 1995 a, b) were developed that drew upon the best features of the existing systems, whilst avoiding their weaker aspects. There was subsequent wide consultation on the proposed classification structure, including through two European workshops held during the EC-funded BioMar project (Hiscock ed. 1995; Connor ed. 1997). These workshops helped ensure broad acceptance of the proposed structure and its wide applicability across European seas. In addition to a review of classification schemes, an extensive review of the literature describing marine habitats was also undertaken. This helped formulate the initial lists of types which might form the basis of the classification. For this the scientific literature was of considerable help for sediment habitats (a traditional area for marine studies) but relatively poor for rocky habitats (which, in the subtidal, attracted attention only relatively recently through use of SCUBA diving techniques). These initial lists of types were then refined on the basis of new dedicated field surveys, data analyses and field trials. Consultation and testingPhases of external consultation and testing of the classification system have been essential to ensure the classification is as robust and usable as possible. The advice of external consultees has been important in two key areas: - Marine scientists have contributed expertise in their understanding of the marine environment and its communities, both from a generic perspective and with specific knowledge of communities at particular sites around the country. Of particular importance has been advice on the relationships of environmental factors to community structure and the spatial and temporal dynamics of the marine environment.
- Environmental and conservation managers and end-users have helped define their end needs for the classification system. This has been reflected both in terms of the overall structure of the classification, such as the orientation of biotope complexes to mapping and sensitivity needs, the type of information given in the description of each classification type, and the demands of field application.
Field surveys and other data acquisitionThe Marine Nature Conservation Review (MNCR) undertook a programme of field surveys throughout Britain between 1987 and 1998, collecting data suitable to develop the classification. In addition, data were acquired from the published literature and through collaboration with a wide variety of academic, government and other organisations. Comparable data were collected in Ireland through the BioMar project between 1992 and 1996. The data comprise information on the nature of each site (such as substratum, wave exposure and height or depth surveyed), the type of sampling undertaken, the site's location and the species present (together with an indication of their abundance) within discrete habitats at the site. MNCR field recording techniques are described in Hiscock (1996), with Appendix 8 providing the guidance on how to complete MNCR field recording forms (the forms can be downloaded from here).The terminology relating to field survey methods is described further below, and should help users of the classification interpret the habitat information contained in the biotope descriptions. Procedural Guidelines for a wide range of field sampling techniques are given in the Marine Monitoring Handbook (Davies et al. 2001). In total, data for over 16,000 sites comprising more than 36,000 habitat records from around Britain and Ireland were collated and entered onto the MNCR database (as described by Hiscock, 1996). The database includes a module which holds definitions of each classification type, linked to a national dictionary of marine species and to the field survey data. The field survey data have been made widely accessible via the web-based MERMAID application, and more recently, via the National Biodiversity Network from an MS Access-based 'relational' database, Marine Recorder. The Marine Recorder database application has been specifically developed to accept marine biological data from a wide range of survey techniques, including the data held originally in the MNCR database. The application can be downloaded here, and includes a dictionary of the habitat classification types. Terms used for field recording and habitat definitionFor semi-quantitative biological recording, the MNCR SACFOR scale was used. The following definitions for physical habitat characteristics are taken from guidance notes for MNCR field recording (Appendix 8 in Hiscock ed. 1996). Some terms are modified for use in the classification. Salinity - The categories are defined as follows (the points of separation approximate to critical tolerance limits for marine species): Fully marine | 30-40 ‰ | Variable | 18-40 ‰ | Reduced | 18-30 ‰ | Low | <18 ‰ |
Wave exposure - These categories take account of the aspect of the coast (related to direction of prevailing or strong winds), the fetch (distance to nearest land), its openness (the degree of open water offshore) and its profile (the depth profile of water adjacent to the coast). Estimation of wave exposure requires inspection of charts and maps. Extremely exposed | This category is for the few open coastlines which face into prevailing wind and receive oceanic swell without any offshore breaks (such as islands or shallows) for several thousand km and where deep water is close to the shore (50 m depth contour within about 300 m, e.g. Rockall). | Very exposed | These are open coasts which face into prevailing winds and receive oceanic swell without any offshore breaks (such as islands or shallows) for several hundred km but where deep water is not close (>300 m) to the shore. They can be adjacent to extremely exposed sites but face away from prevailing winds (here swell and wave action will refract towards these shores) or where, although facing away from prevailing winds, strong winds and swell often occur (for instance, the east coast of Fair Isle). | Exposed | At these sites, prevailing wind is onshore although there is a degree of shelter because of extensive shallow areas offshore, offshore obstructions, a restricted (<90o) window to open water. These sites will not generally be exposed to strong or regular swell. This can also include open coasts facing away from prevailing winds but where strong winds with a long fetch are frequent. | Moderately exposed | These sites generally include open coasts facing away from prevailing winds and without a long fetch but where strong winds can be frequent. | Sheltered | At these sites, there is a restricted fetch and/or open water window. Coasts can face prevailing winds but with a short fetch (say <20 km) or extensive shallow areas offshore or may face away from prevailing winds. | Very sheltered | These sites are unlikely to have a fetch greater than 20 km (the exception being through a narrow (<30o) open water window, they face away from prevailing winds or have obstructions, such as reefs, offshore. | Extremely sheltered | These sites are fully enclosed with fetch no greater than about 3 km. | Ultra sheltered | Sites with fetch of a few tens or at most 100s of metres. |
In the habitat classification exposed (as in exposed littoral rock) encompasses the extremely exposed, very exposed and exposed categories, whilst sheltered (as in sheltered littoral rock) encompasses sheltered to ultra sheltered categories. Tidal currents (or streams) (maximum at surface) - This is maximum tidal current strength which affects the actual area surveyed. Note for shores and inshore areas this may differ considerably from the tidal currents present offshore. In some narrows and sounds the top of the shore may only be covered at slack water, but the lower shore is subject to fast running water. Very strong | >6 knots (>3 m/sec.) | Strong | 3-6 knots (>1.5-3 m/sec.) | Moderately strong | 1-3 knots (0.5-1.5 m/sec.) | Weak | <1 knot (<0.5 m/sec.) | Very weak | Negligible |
In the habitat classification tide-swept habitats typically have moderately strong or stronger tidal currents. Zone - These definitions primarily relate to rocky habitats or those where algae grow (e.g. stable shallow sublittoral sediments). For use of the terms infralittoral and circalittoral in the classification, especially for sediments, refer also to Table 5. Supralittoral | Colonised by yellow and grey lichens, above the Littorina populations but generally below flowering plants. | Upper littoral fringe | This is the splash zone above High Water of Spring Tides with a dense band of the black lichen by Verrucaria maura. Littorina saxatilis and Littorina neritoides often present. May include saltmarsh species on shale/pebbles in shelter. | Lower littoral fringe | The Pelvetia (in shelter) or Porphyra (exposed) belt. With patchy Verrucaria maura, Verrucaria mucosa and Lichina pygmaea present above the main barnacle population. May also include saltmarsh species on shale/pebbles in shelter. | Upper eulittoral | Barnacles and limpets present in quantity or with dense Fucus spiralis in sheltered locations. | Mid eulittoral | Barnacle-limpet dominated, sometimes mussels or dominated by Fucus vesiculosus and Ascophyllum nodosum in sheltered locations. Mastocarpus stellatus and Palmaria palmata patchy in lower part. Usually quite a wide belt. | Lower eulittoral | Fucus serratus, Mastocarpus stellatus, Himanthalia elongata or Palmaria palmata variously dominant; barnacles sparse. | Sublittoral fringe | Dominated by Alaria esculenta (very exposed), Laminaria digitata (exposed to sheltered) or Laminaria saccharina (very sheltered) with encrusting coralline algae; barnacles sparse. | Upper infralittoral | Dense forest of kelp. | Lower infralittoral | Sparse kelp park, dominated by foliose algae except where grazed. May lack kelp. | Upper circalittoral | Dominated by animals, lacking kelp but with sparse foliose algae except where grazed. | Lower circalittoral | Dominated by animals with no foliose algae but encrusting coralline algae. |
Substratum Bedrock | Includes very soft rock-types such as chalk, peat and clay. | Boulders | Very large (>1024 mm), large (512-1024 mm), small (256-512 mm) | Cobbles | 64-256 mm | Pebbles | 16-64 mm | Gravel | 4-16 mm | Coarse sand | 1-4 mm | Medium sand | 0.25-1 mm | Fine sand | 0.063 - 0.25 mm | Mud | <0.063 mm (the silt/clay fraction) |
Each division of sediment type above represents two divisions on the Wentworth scale (Wentworth 1922). In the habitat classification, bedrock, stable boulders, cobbles or pebbles and habitats of mixed boulder, cobble, pebble and sediment (mixed substrata) as well as artificial substrata (concrete, wood, metal) are collectively referred to as rock. Highly mobile cobbles and pebbles (shingle), together with gravel and coarse sand are collectively referred to as coarse sediments. Mixed sediment consists of heterogeneous mixtures of gravel, sand and mud and may often have shells and stones also. Data analysisFor the 1997 classification, data analyses using the TWINSPAN and DECORANA clustering and ordination techniques were employed to help define the types. The analytical processes adopted are described in Mills (1994). The 1997 version was revised and refined to develop the present version. Extensive re-analyses of the data were carried out using the analytical techniques available in PRIMER (Clarke & Warwick, 2001). The data were initially divided into the five broad habitat types shown in the primary habitat matrix, i.e. Littoral Rock, Littoral Sediment, Infralittoral Rock, Circalittoral Rock and Sublittoral Sediment. Due to the large size of the datasets within each broad habitat, some further a priori divisions of the data within broad habitats were necessary before analysis was possible. Additional analyses were carried out on data from "borderline" habitats to ensure these a priori splits did not force artificial divisions into the classification where this was not supported by differences in the survey data. Analysis within each broad habitat was led by a specialist for that habitat type. Figure 2 shows the data analysis process for the littoral sediment section. The following paragraphs describe the analyses carried out within each broad habitat: Littoral rockAs the biotopes defined in version 97.06 (Connor et al., 1997 a, b) were generally considered satisfactory, analysis focused on clarifying the boundaries between closely related types and confirming the validity of certain less-well defined types. This included attention to the inter-relationship of fucoid-dominated types regarding the bedrock/boulder/mixed substrata and fully marine/variable salinity transitions and examination of the various red algal-dominated types. Additionally new data from intertidal caves enabled substantial development of the classification here. On the basis of these analyses, some restructuring at biotope complex level was necessary. Littoral sedimentDue to the size of the Littoral Sediment dataset (>4000 records), some a priori division was necessary to provide datasets that could be managed within PRIMER (Clarke & Warwick, 2001). Data were divided based on the sediment type categories at habitat complex level in the 97.06 classification (Connor et al., 1997a, b): gravels and sands, muddy sands, sandy muds, muds and mixed sediments. Semi-quantitative epifaunal data were considered to be of less value than quantitative infaunal data for the purposes of the analysis and were thus excluded. Epifaunal data were however used to define types where a significant proportion of species would be sampled in epibiota sampling techniques, and/or where few infaunal samples were available, e.g. for mussel beds. Cluster analysis was carried out based on species matrices listing individual counts per m 2 in each sample, using the PRIMER software package (Clarke & Warwick, 2001). The data were divided into small clusters of biologically similar records, based on the resulting dendrograms. Comparative tables were produced to compare the species data and physical data between each of the small clusters. Where there were no notable differences between the physical and biological characteristics of the small clusters, they were amalgamated into larger groups which would form the preliminary basis for biotopes and sub-biotopes. Where similar biological and physical profiles appeared from clusters derived from different datasets, those data were joined and re-analysed. In particular, there was some overlap between the 'gravels and sands' and the 'muddy sands', and between the 'muddy sands' and 'mud' datasets. This re-analysis was carried out to ensure that the a priori divisions of the data did not artificially force divisions of otherwise coherent clusters. The resulting preliminary biotope and sub-biotope groups of records were then checked to ensure cohesion of both the environmental and species data. Individual records which differed significantly from the average profile for the group (in terms of biology or physical habitat characteristics) were removed, resulting in a group of records which formed the basis of the biotope descriptions (core biotope records). The physical and biological profiles from the core biotope records were then used to group biotopes of similar character into biotope complexes, and these in turn were assigned to habitat complexes and broad habitats. Note that, in addition to the habitat complexes defined on sediment character, two additional categories were created based on epifaunal characteristics (littoral sediments dominated by macrophytes, and littoral biogenic reefs). Infralittoral rockAs the biotopes defined in version 97.06 were generally considered satisfactory, analysis focused on clarifying the boundaries between closely related types and confirming the validity of certain less-well defined types. This included particular attention to the tide-swept kelp types and the inter-relationship of highly grazed and poorly grazed kelp habitats. On the basis of these analyses, some restructuring at biotope complex level was necessary. Attention was also paid to the vertical rock section of the infralittoral rock classification, and examining how these additional biotopes could be fitted into the existing biotope complexes, reflecting the subtle differences in their biological character. Circalittoral rockDue to the complexities of this part of the classification, especially the more subtle differences between types on the open coast, a full re-analysis of the data were undertaken. The large size of the circalittoral rock dataset meant that some a priori division was necessary to provide datasets that could be managed within PRIMER (Clarke & Warwick, 2001). Data were divided on the basis of three previously determined energy levels; high, moderate and low energy. Cluster analysis was carried out using epifaunal species matrices exported from the AREV database, using the PRIMER software package (Clarke & Warwick, 2001). The data were divided into small clusters of biologically similar records, based on the resulting dendrograms. Comparative tables were produced to compare the species data and physical data between each of the small clusters. Where there were no notable differences between the physical and biological characteristics of the small clusters, they were amalgamated into larger groups which would form the preliminary basis for biotopes and sub-biotopes. Where similar biological and physical profiles appeared from clusters derived from different datasets, those data were joined and re-analysed. This re-analysis was carried out to ensure that the a priori divisions of the data did not artificially force divisions of otherwise coherent clusters. The resulting preliminary biotope and sub-biotope groups of records were then checked to ensure cohesion of both the environmental and species data. Individual records which differed significantly from the average profile for the group (in terms of biology or physical habitat characteristics) were removed, resulting in a group of records which formed the basis of the biotope descriptions (core biotope records). The physical and biological profiles from the core biotope records were then used to group biotopes of similar character into biotope complexes, and these in turn were assigned to habitat complexes and broad habitats. As in the infralittoral rock section, further analysis was also carried out on the vertical rock section of the circalittoral rock classification. Sublittoral sedimentA full re-analysis of the existing data on the MNCR database in addition to data supplied by the sublittoral specialist was carried out (approximately 10,000 records in total). This followed a similar approach to that described for littoral sediment and as outlined in Figure 2. Data were split according to sediment type, data type (infaunal or epibiota) and sampling technique (where appropriate). Poor quality data was also removed prior to analysis for later manual assessment. Cluster analysis was undertaken using either PRIMER (as described for the littoral sediments) or TWINSPAN (following the guidelines in Mills, 1994). Clusters of biologically similar records were produced and assessed using comparative tables. Clusters with poor species definition or highly variable physical characteristics were further sub-divided until more homogenous groups were derived. Where similar biological and physical profiles appeared from clusters derived from different main habitat datasets those data were combined and re-analysed using the same clustering methods as described above in order ensure that the a priori divisions of the data did not bias the results of the analysis. Where similar biological and physical profiles were found in clusters from datasets of differing sampling method or those with different types of data (e.g. epibiota or infauna) the groups were re-analysed where possible at a lower level of resolution (either presence-absence or on the MNCR SACFOR scale) using PRIMER or TWINSPAN such that the differences in data type were reduced. As for the littoral sediments the resulting groups were then checked for cohesion with regard the physical and biological data, and individual records assigned to the groups were checked against the profiles of the groups as a whole and re-assigned if necessary. The physical and biological profiles from the core records for each type were then used to group types of similar character into the broader biotope complexes and these in turn were assigned to one of the six main habitats for sublittoral sediment, derived from the EUNIS classification. The relationship between the sublittoral sediment biotopes is shown for separate depth bands in a series of habitat matrices, available to download as images from the classification website.
|
Anexo 3 - Canhões submarinos portugueses
Um Desfiladeiro submarino ou canhão submarino, é um vale alcantilado localizado no fundo oceânico de um talude continental. Muitos desfiladeiros submarinos são prolongamentos de grandes rios; contudo, existem alguns que não possuem tal associação. São conhecidos exemplos situados a profundidades maiores do que 2 km abaixo do nível do mar, formados por atividade vulcânica ou sísmica. Muitos desfiladeiros submarinos prolongam-se na forma de canais submarinos que cortam o sopé continental, podendo atingir centenas de quilómetros de extensão. São mais comuns nos taludes mais inclinados. Exibem erosão que corta todos os substratos, desde os sedimentos não consolidados até à rocha cristalina.
(Citação de Wikipédia)
Diversidade morfológica das margens continentais evidenciando um canhão submarino e respectivo leque de sedimentos (Adaptado de Blondel in Wefer G. et al., Ocean Margin Systems, 2003). O maior e mais conhecido canhão de Portugal é o
Canhão de Nazaré.
O Canhão da Nazaré, como o nome indica fica situado na costa da Nazaré, Portugal. É o maior desfiladeiro submarino da Europa, tem uma extensão de cerca de 200 km e chega a atingir os 5 000 m de profundidade.
Rico e diverso em vida marinha, tem vindo a ser alvo de vários estudos por parte da Marinha Portuguesa, e várias outras instituições, nacionais e estrangeiras, com o objectivo e como argumento para expansão da "Zona Econômica Exclusiva Portuguesa", ZEE.
Recentemente os pesquisadores encontraram, por exemplo, um tubarão a 3 600 metros de profundidade, assim como diversas colónias de corais.
O Canhão de Nazaré também funciona como um polarizador de ondulações. As ondas conseguem viajar em uma velocidade muito maior pela falha geológica, chegando na costa praticamente sem dissipação de energia. A Praia do Norte, na cidade de Nazaré, apresenta consistentemente ondas significativamente maiores do que o restante da costa portuguesa por conta do Canhão de Nazaré.
No dia 01/11/2011 o surfista Garrett McNamara surfou (na região conhecida como Norte do Canhão), uma onda que tinha cerca de 27,5 metros de altura, sendo a maior onda já surfada na história.
(em fundo esverdeado: citação de Wikipédia)
Outros canhões importantes no espaço marítimo português são o
notes
1 Sem esquecer que os resultados de uma metodologia de interpolação como aquela aplicada na produção dos mapas em "Mesh" nunca pode produzir resultados melhores do que aqueles possíveis perante os dados que entraram na análise - ou dito mais simples: os resultados são apenas fieis e credíveis na medida que as amostragens têm sido densas suficientes e as malhas do "Mesh" não se tornarem grandes demais.